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1 The ∂-Equation, the Hartogs Extension Theorem, and
Regularization of Subharmonic Functions

1.1 Compactly supported solutions of the ∂-equation

Theorem 1.1. Let fj ∈ Ck0 (Cn) for 1 ≤ j ≤ n and n > 1 be such that ∂f = 0. Then the
equation ∂u = f has a unique solution u ∈ Ck0 (Cn).

Proof. Consider ∂u
∂zj

for 1 ≤ j ≤ n. Define

u(z) = − 1

π

∫∫
C

f1(ζ1, z2, . . . , zn)

ζ1 − z1
L(dζ1).

Then u ∈ Ck(Cn), and ∂u
∂z1

= f1. When j > 1, we have by the compatibility conditions
that

∂u

∂zj
= − 1

π

∫∫ ∂f1
∂zj

(ζ1, z2, . . . , zn)

ζ − z1
L(dζ1) =

1

π

∫∫ ∂f1
∂z1

(ζ1, z2, . . . , zn)

ζ − z1
L(dζ1) = fj(z),

using Cauchy’s integral formula.
We claim that if n > 1, then u is compactly supported: If |z1|+· · ·+|zn| is large enough,

then u(z) = 0. On the other hand, ∂u = 0 on Cn\K, where K =
⋃n
i=1 supp(fi) is compact.

u ∈ Hol(Cn \K), and if Ω is the unbounded component, then, as u(z) = 0 on some open
set in Ω, u = 0 in Ω by the uniqueness of analytic continuation. So supp(u) ⊆ K ∪

⋃
M,

where M is a bounded component of Cn \K. This is bounded, so u ∈ Ck0 (Cn).

1.2 The Hartogs extension theorem

Theorem 1.2 (Hartogs extension theorem). Let |Omega ⊆ Cn be open with n > 1, and
let K ⊆ Ω be compact with Ω \K. Let u ∈ Hol(Ω \K). Then there exists a U ∈ Hol(Ω)
such that U = u in Ω \K.
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Proof. Let ϕ ∈ C∞0 (Ω) such that ϕ = 1 in a neighborhood of K. Then let u0 = (1−ϕ)u ∈
C∞(Ω). We shall construct a holomorphic extension U of u such that U = u0 − v, where
we need v ∈ C∞(Ω) and ∂U = 0. We need

0 = ∂U

= ∂u− ∂v
= ∂((1− ϕ)u)− ∂v
= (∂(1− ϕ))u− ∂v
= −(∂ϕ)u+ ∂v

with compact support ⊆ Ω, away from K. Here, we have used that u ∈ Hol(Ω \K). We
have that (∂ϕ)u ∈ C∞0 (Cn;Cn). Solve:

∂v = −(∂ϕ)u.

The compatibility conditions are satisfied:

∂zk

(
∂ϕ

∂zj
u

)
= ∂zj

(
∂ϕ

∂zk
u

)
∀j, k.

So there exists a v ∈ C∞0 (Cn) solving this, and supp(∂v) ⊆ supp(ϕ). So v = 0 on the
unbounded component O of Cn \ supp(ϕ). We get U −u0−v = (1−ϕ)u−v ∈ Hol(Ω), and
U = u on O ∩ (Ω \ suppϕ)), which is an open subset of Ω \K. This is nonempty because
∂O ⊆ supp(ϕ), so since Ω \K is connected, U = u in Ω \K.

The following special case is of note:

Corollary 1.1. Let f ∈ Hol(Cn) with n > 1. Then f cannot have an isolated zero.

Proof. If f(0) = 0 and f 6= 0 on 0 < |z| < R, then apply the Hartogs extension theorem
to K = {0} and Ω = {|z| < R}.Then h = 1/f ∈ Hol(Ω \K), os there exists a extension
U ∈ Hol(|z| < R). Then fU = 1, which is a contradiction.

1.3 Regularization of subharmonic functions

Let Ω ⊆ C be open and connected. Let u ∈ SH(Ω) with u 6≡ −∞. Then u ∈ L1
loc(Ω). Let

0 ≤ ϕ ∈ C∞0 (C) be such that supp(ϕ) ⊆ {|z| < 1} and
∫
ϕ(z)L(dz) = 1, where ϕ depends

only on |z|.

Remark 1.1. We can take

ϕ(z) = Ch(1− |z|2), h(t) =

{
e−1/t t > 0

0 t ≤ 0.

You can check that h(j)(0) = 0 for all j, so h ∈ C∞(R).
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Define

uε = u ∗ ϕε, ϕε(z) =
1

ε2
ϕ
(z
ε

)
,

so

uε(z) =

∫
u(z − ζ)ϕε(ζ)L(dζ), z ∈ Ωε = {z ∈ Ω : dist(z,Ωc) > ε}.

Proposition 1.1. uε ∈ (C∞ ∩ SH)(Ωε), and uε ↓ u as ε ↓ 0.

Proof. We have

uε(z) =
1

ε2

∫
u(ζ)ϕ

(
z − ζ
ε

)
L(dζ) ∈ C∞(Ωε).

Check the sub-mean value inequality: First write

uε(z) =

∫
u(z − εζ)ϕ(ζ)L(dζ).

If z ∈ Ωε and r is small, then since u is subharmonic,

1

2π

∫ 2π

0
uε(z + reit) dt =

1

2π

∫ 2π

0

∫
u(z + reit − εζ)ϕ(ζ)L(dζ) dt

≥
∫
u(z − εζ)ϕ(ζ)L(dζ)

= uε(z).

To show that uε(z) ≥ u(z), we have

uε(z) =

∫
u(z + εζ)ϕ(ζ)L(dζ)

=

∫ ∞
0

(∫ 2π

0
u(z + εreit) dt

)
︸ ︷︷ ︸

≥2πu(z)

ϕ(r)r dr

≥
(

2π

∫ ∞
0

ϕ(r)r dr

)
︸ ︷︷ ︸

=1

u(z).

We will finish the proof next time.
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