Math 246C Lecture 21 Notes

Daniel Raban

May 21, 2019

1 The $\overline{\partial}$ -Equation, the Hartogs Extension Theorem, and Regularization of Subharmonic Functions

1.1 Compactly supported solutions of the $\overline{\partial}$ -equation

Theorem 1.1. Let $f_j \in C_0^k(\mathbb{C}^n)$ for $1 \leq j \leq n$ and n > 1 be such that $\overline{\partial} f = 0$. Then the equation $\overline{\partial} u = f$ has a unique solution $u \in C_0^k(\mathbb{C}^n)$.

Proof. Consider $\frac{\partial u}{\partial \overline{z}_j}$ for $1 \leq j \leq n$. Define

$$u(z) = -\frac{1}{\pi} \iint_{\mathbb{C}} \frac{f_1(\zeta_1, z_2, \dots, z_n)}{\zeta_1 - z_1} L(d\zeta_1).$$

Then $u \in C^k(\mathbb{C}^n)$, and $\frac{\partial u}{\partial \overline{z}_1} = f_1$. When j > 1, we have by the compatibility conditions that

$$\frac{\partial u}{\partial \overline{z}_j} = -\frac{1}{\pi} \iint \frac{\frac{\partial f_1}{\partial \overline{z}_j}(\zeta_1, z_2, \dots, z_n)}{\zeta - z_1} L(d\zeta_1) = \frac{1}{\pi} \iint \frac{\frac{\partial f_1}{\partial \overline{z}_1}(\zeta_1, z_2, \dots, z_n)}{\zeta - z_1} L(d\zeta_1) = f_j(z),$$

using Cauchy's integral formula.

We claim that if n > 1, then u is compactly supported: If $|z_1| + \cdots + |z_n|$ is large enough, then u(z) = 0. On the other hand, $\overline{\partial}u = 0$ on $\mathbb{C}^n \setminus K$, where $K = \bigcup_{i=1}^n \operatorname{supp}(f_i)$ is compact. $u \in \operatorname{Hol}(\mathbb{C}^n \setminus K)$, and if Ω is the unbounded component, then, as u(z) = 0 on some open set in Ω , u = 0 in Ω by the uniqueness of analytic continuation. So $\operatorname{supp}(u) \subseteq K \cup \bigcup \mathcal{M}$, where M is a bounded component of $\mathbb{C}^n \setminus K$. This is bounded, so $u \in C_0^k(\mathbb{C}^n)$. \Box

1.2 The Hartogs extension theorem

Theorem 1.2 (Hartogs extension theorem). Let $|Omega \subseteq \mathbb{C}^n$ be open with n > 1, and let $K \subseteq \Omega$ be compact with $\Omega \setminus K$. Let $u \in \operatorname{Hol}(\Omega \setminus K)$. Then there exists a $U \in \operatorname{Hol}(\Omega)$ such that U = u in $\Omega \setminus K$.

Proof. Let $\varphi \in C_0^{\infty}(\Omega)$ such that $\varphi = 1$ in a neighborhood of K. Then let $u_0 = (1 - \varphi)u \in C^{\infty}(\Omega)$. We shall construct a holomorphic extension U of u such that $U = u_0 - v$, where we need $v \in C^{\infty}(\Omega)$ and $\overline{\partial}U = 0$. We need

$$\begin{split} 0 &= \overline{\partial} U \\ &= \overline{\partial} u - \overline{\partial} v \\ &= \overline{\partial} ((1 - \varphi)u) - \overline{\partial} v \\ &= (\overline{\partial} (1 - \varphi))u - \overline{\partial} v \\ &= (\overline{\partial} (1 - \varphi))u - \overline{\partial} v \\ &= -(\overline{\partial} \varphi)u + \overline{\partial} v \end{split}$$

with compact support $\subseteq \Omega$, away from K. Here, we have used that $u \in \operatorname{Hol}(\Omega \setminus K)$. We have that $(\overline{\partial}\varphi)u \in C_0^{\infty}(\mathbb{C}^n; \mathbb{C}^n)$. Solve:

$$\overline{\partial}v = -(\overline{\partial}\varphi)u.$$

The compatibility conditions are satisfied:

$$\partial_{\overline{z}_k} \left(\frac{\partial \varphi}{\partial \overline{z}_j} u \right) = \partial_{\overline{z}_j} \left(\frac{\partial \varphi}{\partial \overline{z}_k} u \right) \qquad \forall j, k.$$

So there exists a $v \in C_0^{\infty}(\mathbb{C}^n)$ solving this, and $\operatorname{supp}(\overline{\partial}v) \subseteq \operatorname{supp}(\varphi)$. So v = 0 on the unbounded component O of $\mathbb{C}^n \setminus \operatorname{supp}(\varphi)$. We get $U - u_0 - v = (1 - \varphi)u - v \in \operatorname{Hol}(\Omega)$, and U = u on $O \cap (\Omega \setminus \operatorname{supp} \varphi)$, which is an open subset of $\Omega \setminus K$. This is nonempty because $\partial O \subseteq \operatorname{supp}(\varphi)$, so since $\Omega \setminus K$ is connected, U = u in $\Omega \setminus K$. \Box

The following special case is of note:

Corollary 1.1. Let $f \in Hol(\mathbb{C}^n)$ with n > 1. Then f cannot have an isolated zero.

Proof. If f(0) = 0 and $f \neq 0$ on 0 < |z| < R, then apply the Hartogs extension theorem to $K = \{0\}$ and $\Omega = \{|z| < R\}$. Then $h = 1/f \in \operatorname{Hol}(\Omega \setminus K)$, os there exists a extension $U \in \operatorname{Hol}(|z| < R)$. Then fU = 1, which is a contradiction.

1.3 Regularization of subharmonic functions

Let $\Omega \subseteq \mathbb{C}$ be open and connected. Let $u \in SH(\Omega)$ with $u \not\equiv -\infty$. Then $u \in L^1_{loc}(\Omega)$. Let $0 \leq \varphi \in C_0^{\infty}(\mathbb{C})$ be such that $supp(\varphi) \subseteq \{|z| < 1\}$ and $\int \varphi(z) L(dz) = 1$, where φ depends only on |z|.

Remark 1.1. We can take

$$\varphi(z) = Ch(1 - |z|^2), \qquad h(t) = \begin{cases} e^{-1/t} & t > 0\\ 0 & t \le 0. \end{cases}$$

You can check that $h^{(j)}(0) = 0$ for all j, so $h \in C^{\infty}(\mathbb{R})$.

Define

$$u_{\varepsilon} = u * \varphi_{\varepsilon}, \qquad \varphi_{\varepsilon}(z) = \frac{1}{\varepsilon^2} \varphi\left(\frac{z}{\varepsilon}\right),$$

 \mathbf{SO}

$$u_{\varepsilon}(z) = \int u(z-\zeta)\varphi_{\varepsilon}(\zeta) L(d\zeta), \qquad z \in \Omega_{\varepsilon} = \{z \in \Omega : \operatorname{dist}(z,\Omega^{c}) > \varepsilon\}.$$

Proposition 1.1. $u_{\varepsilon} \in (C^{\infty} \cap SH)(\Omega_{\varepsilon})$, and $u_{\varepsilon} \downarrow u$ as $\varepsilon \downarrow 0$.

Proof. We have

$$u_{\varepsilon}(z) = \frac{1}{\varepsilon^2} \int u(\zeta)\varphi\left(\frac{z-\zeta}{\varepsilon}\right) L(d\zeta) \in C^{\infty}(\Omega_{\varepsilon}).$$

Check the sub-mean value inequality: First write

$$u_{\varepsilon}(z) = \int u(z - \varepsilon \zeta) \varphi(\zeta) L(d\zeta).$$

If $z \in \Omega_{\varepsilon}$ and r is small, then since u is subharmonic,

$$\frac{1}{2\pi} \int_0^{2\pi} u_{\varepsilon}(z + re^{it}) dt = \frac{1}{2\pi} \int_0^{2\pi} \int u(z + re^{it} - \varepsilon\zeta)\varphi(\zeta) L(d\zeta) dt$$
$$\geq \int u(z - \varepsilon\zeta)\varphi(\zeta) L(d\zeta)$$
$$= u_{\varepsilon}(z).$$

To show that $u_{\varepsilon}(z) \ge u(z)$, we have

$$u_{\varepsilon}(z) = \int u(z + \varepsilon\zeta)\varphi(\zeta) L(d\zeta)$$

=
$$\int_{0}^{\infty} \underbrace{\left(\int_{0}^{2\pi} u(z + \varepsilon r e^{it}) dt\right)}_{\geq 2\pi u(z)} \varphi(r) r dr$$

$$\geq \underbrace{\left(2\pi \int_{0}^{\infty} \varphi(r) r dr\right)}_{=1} u(z).$$

We will finish the proof next time.